metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D12⋊1C4, C42⋊4S3, Dic6⋊1C4, C4.17D12, C12.33D4, C3⋊1C4≀C2, (C4×C12)⋊6C2, C4.6(C4×S3), (C2×C6).26D4, (C2×C4).66D6, C12.16(C2×C4), C2.3(D6⋊C4), C4○D12.1C2, C4.Dic3⋊1C2, C6.1(C22⋊C4), (C2×C12).96C22, C22.7(C3⋊D4), SmallGroup(96,12)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42⋊4S3
G = < a,b,c,d | a4=b4=c3=d2=1, dad=ab=ba, ac=ca, bc=cb, dbd=b-1, dcd=c-1 >
Character table of C42⋊4S3
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | 12K | 12L | |
size | 1 | 1 | 2 | 12 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 12 | 2 | 2 | 2 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -i | 1 | i | i | -i | -1 | 1 | -1 | -1 | -i | i | i | i | 1 | -i | -i | -1 | -i | -i | 1 | i | i | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | i | 1 | -i | -i | i | -1 | 1 | -1 | -1 | i | -i | -i | -i | 1 | i | i | -1 | i | i | 1 | -i | -i | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | 1 | i | i | -i | 1 | 1 | -1 | -1 | i | -i | i | i | 1 | -i | -i | -1 | -i | -i | 1 | i | i | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | i | 1 | -i | -i | i | 1 | 1 | -1 | -1 | -i | i | -i | -i | 1 | i | i | -1 | i | i | 1 | -i | -i | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 0 | -1 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | -√3 | √3 | 1 | √3 | -√3 | -1 | √3 | -√3 | 1 | -√3 | √3 | -1 | orthogonal lifted from D12 |
ρ14 | 2 | 2 | -2 | 0 | -1 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | √3 | -√3 | 1 | -√3 | √3 | -1 | -√3 | √3 | 1 | √3 | -√3 | -1 | orthogonal lifted from D12 |
ρ15 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | -√-3 | √-3 | 1 | -√-3 | √-3 | 1 | -√-3 | √-3 | 1 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ16 | 2 | -2 | 0 | 0 | 2 | 2i | -2i | 1-i | 0 | -1-i | 1+i | -1+i | 0 | -2 | 0 | 0 | 0 | 0 | 1+i | 1+i | 0 | -1+i | -1+i | -2i | 1-i | 1-i | 0 | -1-i | -1-i | 2i | complex lifted from C4≀C2 |
ρ17 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | √-3 | -√-3 | 1 | √-3 | -√-3 | 1 | √-3 | -√-3 | 1 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | -2 | 0 | -1 | -2 | -2 | 2i | 2 | -2i | -2i | 2i | 0 | -1 | 1 | 1 | 0 | 0 | i | i | -1 | -i | -i | 1 | -i | -i | -1 | i | i | 1 | complex lifted from C4×S3 |
ρ19 | 2 | -2 | 0 | 0 | 2 | -2i | 2i | 1+i | 0 | -1+i | 1-i | -1-i | 0 | -2 | 0 | 0 | 0 | 0 | 1-i | 1-i | 0 | -1-i | -1-i | 2i | 1+i | 1+i | 0 | -1+i | -1+i | -2i | complex lifted from C4≀C2 |
ρ20 | 2 | 2 | -2 | 0 | -1 | -2 | -2 | -2i | 2 | 2i | 2i | -2i | 0 | -1 | 1 | 1 | 0 | 0 | -i | -i | -1 | i | i | 1 | i | i | -1 | -i | -i | 1 | complex lifted from C4×S3 |
ρ21 | 2 | -2 | 0 | 0 | 2 | -2i | 2i | -1-i | 0 | 1-i | -1+i | 1+i | 0 | -2 | 0 | 0 | 0 | 0 | -1+i | -1+i | 0 | 1+i | 1+i | 2i | -1-i | -1-i | 0 | 1-i | 1-i | -2i | complex lifted from C4≀C2 |
ρ22 | 2 | -2 | 0 | 0 | -1 | 2i | -2i | -1+i | 0 | 1+i | -1-i | 1-i | 0 | 1 | -√-3 | √-3 | 0 | 0 | ζ43ζ3+ζ3+1 | ζ43ζ32+ζ32+1 | √3 | ζ4ζ32+ζ4+ζ32 | ζ4ζ3+ζ4+ζ3 | i | ζ4ζ3+ζ3+1 | ζ4ζ32+ζ32+1 | -√3 | ζ43ζ32+ζ43+ζ32 | ζ43ζ3+ζ43+ζ3 | -i | complex faithful |
ρ23 | 2 | -2 | 0 | 0 | 2 | 2i | -2i | -1+i | 0 | 1+i | -1-i | 1-i | 0 | -2 | 0 | 0 | 0 | 0 | -1-i | -1-i | 0 | 1-i | 1-i | -2i | -1+i | -1+i | 0 | 1+i | 1+i | 2i | complex lifted from C4≀C2 |
ρ24 | 2 | -2 | 0 | 0 | -1 | -2i | 2i | 1+i | 0 | -1+i | 1-i | -1-i | 0 | 1 | √-3 | -√-3 | 0 | 0 | ζ4ζ3+ζ4+ζ3 | ζ4ζ32+ζ4+ζ32 | √3 | ζ43ζ32+ζ32+1 | ζ43ζ3+ζ3+1 | -i | ζ43ζ3+ζ43+ζ3 | ζ43ζ32+ζ43+ζ32 | -√3 | ζ4ζ32+ζ32+1 | ζ4ζ3+ζ3+1 | i | complex faithful |
ρ25 | 2 | -2 | 0 | 0 | -1 | 2i | -2i | 1-i | 0 | -1-i | 1+i | -1+i | 0 | 1 | √-3 | -√-3 | 0 | 0 | ζ43ζ3+ζ43+ζ3 | ζ43ζ32+ζ43+ζ32 | -√3 | ζ4ζ32+ζ32+1 | ζ4ζ3+ζ3+1 | i | ζ4ζ3+ζ4+ζ3 | ζ4ζ32+ζ4+ζ32 | √3 | ζ43ζ32+ζ32+1 | ζ43ζ3+ζ3+1 | -i | complex faithful |
ρ26 | 2 | -2 | 0 | 0 | -1 | -2i | 2i | -1-i | 0 | 1-i | -1+i | 1+i | 0 | 1 | √-3 | -√-3 | 0 | 0 | ζ4ζ32+ζ32+1 | ζ4ζ3+ζ3+1 | √3 | ζ43ζ3+ζ43+ζ3 | ζ43ζ32+ζ43+ζ32 | -i | ζ43ζ32+ζ32+1 | ζ43ζ3+ζ3+1 | -√3 | ζ4ζ3+ζ4+ζ3 | ζ4ζ32+ζ4+ζ32 | i | complex faithful |
ρ27 | 2 | -2 | 0 | 0 | -1 | -2i | 2i | 1+i | 0 | -1+i | 1-i | -1-i | 0 | 1 | -√-3 | √-3 | 0 | 0 | ζ4ζ32+ζ4+ζ32 | ζ4ζ3+ζ4+ζ3 | -√3 | ζ43ζ3+ζ3+1 | ζ43ζ32+ζ32+1 | -i | ζ43ζ32+ζ43+ζ32 | ζ43ζ3+ζ43+ζ3 | √3 | ζ4ζ3+ζ3+1 | ζ4ζ32+ζ32+1 | i | complex faithful |
ρ28 | 2 | -2 | 0 | 0 | -1 | 2i | -2i | 1-i | 0 | -1-i | 1+i | -1+i | 0 | 1 | -√-3 | √-3 | 0 | 0 | ζ43ζ32+ζ43+ζ32 | ζ43ζ3+ζ43+ζ3 | √3 | ζ4ζ3+ζ3+1 | ζ4ζ32+ζ32+1 | i | ζ4ζ32+ζ4+ζ32 | ζ4ζ3+ζ4+ζ3 | -√3 | ζ43ζ3+ζ3+1 | ζ43ζ32+ζ32+1 | -i | complex faithful |
ρ29 | 2 | -2 | 0 | 0 | -1 | -2i | 2i | -1-i | 0 | 1-i | -1+i | 1+i | 0 | 1 | -√-3 | √-3 | 0 | 0 | ζ4ζ3+ζ3+1 | ζ4ζ32+ζ32+1 | -√3 | ζ43ζ32+ζ43+ζ32 | ζ43ζ3+ζ43+ζ3 | -i | ζ43ζ3+ζ3+1 | ζ43ζ32+ζ32+1 | √3 | ζ4ζ32+ζ4+ζ32 | ζ4ζ3+ζ4+ζ3 | i | complex faithful |
ρ30 | 2 | -2 | 0 | 0 | -1 | 2i | -2i | -1+i | 0 | 1+i | -1-i | 1-i | 0 | 1 | √-3 | -√-3 | 0 | 0 | ζ43ζ32+ζ32+1 | ζ43ζ3+ζ3+1 | -√3 | ζ4ζ3+ζ4+ζ3 | ζ4ζ32+ζ4+ζ32 | i | ζ4ζ32+ζ32+1 | ζ4ζ3+ζ3+1 | √3 | ζ43ζ3+ζ43+ζ3 | ζ43ζ32+ζ43+ζ32 | -i | complex faithful |
(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 10 4 7)(2 11 5 8)(3 12 6 9)(13 16 15 14)(17 20 19 18)(21 24 23 22)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 17 23)(14 18 24)(15 19 21)(16 20 22)
(1 23)(2 17)(3 13)(4 21)(5 19)(6 15)(7 22)(8 20)(9 16)(10 24)(11 18)(12 14)
G:=sub<Sym(24)| (13,14,15,16)(17,18,19,20)(21,22,23,24), (1,10,4,7)(2,11,5,8)(3,12,6,9)(13,16,15,14)(17,20,19,18)(21,24,23,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,17,23)(14,18,24)(15,19,21)(16,20,22), (1,23)(2,17)(3,13)(4,21)(5,19)(6,15)(7,22)(8,20)(9,16)(10,24)(11,18)(12,14)>;
G:=Group( (13,14,15,16)(17,18,19,20)(21,22,23,24), (1,10,4,7)(2,11,5,8)(3,12,6,9)(13,16,15,14)(17,20,19,18)(21,24,23,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,17,23)(14,18,24)(15,19,21)(16,20,22), (1,23)(2,17)(3,13)(4,21)(5,19)(6,15)(7,22)(8,20)(9,16)(10,24)(11,18)(12,14) );
G=PermutationGroup([[(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,10,4,7),(2,11,5,8),(3,12,6,9),(13,16,15,14),(17,20,19,18),(21,24,23,22)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,17,23),(14,18,24),(15,19,21),(16,20,22)], [(1,23),(2,17),(3,13),(4,21),(5,19),(6,15),(7,22),(8,20),(9,16),(10,24),(11,18),(12,14)]])
G:=TransitiveGroup(24,117);
C42⋊4S3 is a maximal subgroup of
D24⋊11C4 D24⋊4C4 S3×C4≀C2 C42⋊3D6 Q8⋊5D12 M4(2).22D6 C42.196D6 C42⋊5D6 Q8.14D12 D4.10D12 C42⋊6D6 C42⋊7D6 D12.14D4 C42⋊8D6 D12.15D4 C42⋊4D9 C42⋊D9 D12⋊2Dic3 C12.80D12 C122⋊C2 (C4×C12)⋊S3 C60.99D4 D60⋊16C4 D60⋊7C4 D12⋊2F5 D60⋊5C4
C42⋊4S3 is a maximal quotient of
C6.C4≀C2 C4⋊Dic3⋊C4 C4.8Dic12 C4.17D24 C42.D6 C42.2D6 C12.8C42 C42⋊4D9 D12⋊2Dic3 C12.80D12 C122⋊C2 C60.99D4 D60⋊16C4 D60⋊7C4 D12⋊2F5 D60⋊5C4
Matrix representation of C42⋊4S3 ►in GL2(𝔽13) generated by
8 | 0 |
0 | 1 |
5 | 0 |
0 | 8 |
9 | 0 |
0 | 3 |
0 | 1 |
1 | 0 |
G:=sub<GL(2,GF(13))| [8,0,0,1],[5,0,0,8],[9,0,0,3],[0,1,1,0] >;
C42⋊4S3 in GAP, Magma, Sage, TeX
C_4^2\rtimes_4S_3
% in TeX
G:=Group("C4^2:4S3");
// GroupNames label
G:=SmallGroup(96,12);
// by ID
G=gap.SmallGroup(96,12);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,121,31,362,579,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^3=d^2=1,d*a*d=a*b=b*a,a*c=c*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of C42⋊4S3 in TeX
Character table of C42⋊4S3 in TeX